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Abstract. In this paper, we study the structure of optimal solutions to the sub-
modular function minimization problem. We introduce prime sets and pseudo-
prime sets as basic building block of minimizer sets, and investigate composition,
decomposition, recognition, and certification of prime sets. We show how Schri-
jver’s submodular function minimization algorithm can be modified to construct
in polynomial time a prime or pseudoprime decomposition of the ground set. We
also show that the final vector x obtained by this algorithm is an extreme point
of the polyhedron P := {x ∈ RV : x ≤ 0; x(A) ≤ f(A) for all A ⊆ V }.

1 Introduction

The problem of minimizing a submodular function has been known to be polynomially
solvable since 1981, when Grötschel, Lovász, and Schrijver [10] showed it could be solved
via the ellipsoid method. Until 1999, a purely combinatorial polynomial algorithm for this
problem was unknown. In 1999, Schrijver [18] and independently Iwata, Fleischer, and
Fugishige [14] published such algorithms. The paper by McCormick [16] gives an excellent
account of the history and recent developments of submodular function minimization.

The known certificate of optimality for submodular function minimization is to exibit a vector
x, say, as a convex combination of a set of vectors each obtained via the greedy algorithm
applied using some chosen ordering of the ground set. A set U is shown to be a minimizer
if all of the negative and none of the positive components of x are members of U , and U is
a lower ideal in each of the chosen orderings.

This convex certificate of optimality is polynomially verifiable, since the collection of chosen
orderings can be taken to be of size no greater than the ground set. Thus, the certificate is
verifiable using a quadratic number of function calls and elementary operations.

The motivation for the present work was to find a different certificate of optimality, one
that doesn’t involve convex combinations, and one, hopefully, that could be verified in linear
time.

While this paper doesn’t succeed in this goal, it does provide some new insights about the
structure of optimal solutions. First, we introduce two slightly different basic building blocks
for minimizer sets, which we call prime sets and pseudo-prime sets. We show in Theorem
12 that every minimizer set decomposes into a sequence of prime sets, each of which adds
nonnegative marginal value (with respect to its predecessors in the sequence), and we also
show in Theorem 19 it decomposes similarly into a sequence of pseudo-prime sets.
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Illinois 60208; coullard@northwestern.edu. This work was done while the author was visiting the Institute
for Mathematics and its Applications, University of Minnesota. Supported by a grant from the National
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Next we go on to investigate further prime sets and pseudo-prime sets, with the goal of
finding a certificate for recognizing them. If we could find such a certificate, then this would
give a certificate for minimizers.

The motivating idea can be illustrated on a 2-element example. Consider the function f on
ground set including subset {a, b}, and having f({a}) = 1, f({b}) = 1, and f({a, b}) = −1.
The set A is contained in every minimizer of f . A is an example of both a prime set and
a pseudoprime set. This example can be extended to one in which element b is replaced by
a subset B with the following properties: f(B) = 1; f(B ∪ {a}) = −1; and f(C ∪ {a}) >
f({a}) = 1, for every proper subset C ⊂ B. Again, we can conclude that A = B ∪ {a} is
contained in every minimizer of f .

The previous paragraph illustrates a composition of ordered prime sets in both cases: In
the first case, {a}, with positive marginal value (with respect to ∅), and {b}, with negative
marginal value (with respect to {a}) compose into A, which itself has negative marginal
value; in the second case, {a}, with positive marginal value and B, with negative marginal
value (with respect to {a}) compose into A, with negative marginal value.

We show in Theorem 16 that every prime set with negative marginal value decomposes into
such a sequence of prime sets, where the first member has positive marginal value and the
rest have non-positive marginal value. In the analog for pseudoprime sets, Theorem 20, we
have that every pseudoprime set with negative marginal value decomposes into a sequence
of exactly 2 pseudoprime sets, the first having non-positive marginal value, and the second
having non-negative marginal value with respect to the first.

These 2 theorems give some hope that we could recognize prime sets or pseudoprime sets.
The final step would be a composition theorem that gives a verifiable list of conditions
under which a sequence of 2 prime (or pseudoprime) sets composes into a single prime (or
pseudoprime) set.

To that end, we offer Theorems 17 and 21. Both these theorems have set A with f(A) <
0 partitioned into a sequence {A1, A2}, of prime (pseudoprime) sets, each of which has
nonnegative marginal value with respect to the empty set and non-positive marginal value
with respect to the other. In each case we can conclude that A is contained in every minimizer
of f , but we cannot conclude that A is prime (pseudoprime).

We do have a certificate to verify that a set A is pseudoprime. Unfortunately, this certificate,
stated in Theorem 25, does involve forming |A| convex combinations, and can therefore take
O(|A|3) function calls and elementary operations.

The remainder of the paper deals with the algorithmic question of finding a pseudoprime
decomposition. We show that Schrijver’s algorithm for submodular function minimization
can be extended to produce such a decomposition. We also show that when it finishes,
the components of the decomposition are exactly the strongly connected components of the
associated auxiliary digraph.

Finally, we show that the vector x produced by this algorithm provides an extreme point
optimal solution to an associated linear programming problem.
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2 Definitions

In this section we present necessary definitions.

Function f defined on subsets of finite set V is submodular if, for every pair of subsets A and
B of V, the following inequality is satisfied:

f(A) + f(B) ≥ f(A ∪B) + f(A ∩B). (1)

Equivalently, for every pair of subsets A and B of V , with A ⊆ B, and every element v ∈ V ,
the following inequality is satisfied:

f(A + v)− f(A) ≥ f(B + v)− f(B), (2)

where, here and throughout this paper, the expressions A∪{v} and A−{v} are abbreviated
by A + v and A− v, respectively, for A ⊆ V and v ∈ V .

Given A ⊆ V and v ∈ V −A, the marginal value of v with respect to A, denoted m(v, A), is
f(A + v)− f(A). Thus, condition (2) can be phrased as follows: The marginal value of any
element is non-increasing on any sequence of sets that is ordered by inclusion. The marginal
value of subset B ⊆ V with respect to A is m(B, A) := f(A ∪ B) − f(B). The marginal
value of any subset is similarly non-increasing.

The submodular function minimization problem is to find S∗ ⊆ V with f(S∗) ≤ f(S), for
every S ⊆ V . Given sets S, A ⊆ V , we will say S is a minimizer for f on A if S ⊆ A and
f(S) ≤ f(B), for every B ⊆ A. If no set A is specified, then it means S is a minimizer for
f on V .

We assume throughout that f is normalized (by subtracting f(∅) from each f(S), if neces-
sary), so that f(∅) = 0. This normalization maintains submodularity and does not affect
the optimal solution to the submodular function minimization problem.

Given a submodular function f on V, and given S ⊆ V , the submodular function obtained
by contracting S, denoted fV/S, is defined as follows:

fV/S(P ) := f(P ∪ S)− f(S), for each P ⊆ V − S.

Note that fV/S(∅) = 0. Let mV/S denote the marginal value function associated with fV/S.

Assume {A,B, C, D} is a partition of V , and Then, directly from definitions, we have:

mV/A(C, B) = fV/A(C ∪B)− fV/A(B)

= f(C ∪B ∪ A)− f(A)− f(B ∪ A) + f(A)

= m(C, B ∪ A). (3)

Let ≺ be a total order of V . For v ∈ V , the closed lower ideal defined by v, denoted [v]≺,
is the set {u ∈ V : u ¹ v}, and the open lower ideal defined by v, denoted [v)≺, is the set
{u ∈ V : u ≺ v}.
Suppose V is partitioned into a sequence of sets:

S1, S2, . . . , Sk, T1, T2, . . . , Tr, (4)
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and we have a total order ≺ on V . Then ≺ is compatible with the sequence (4) if for every
u, v ∈ V , if u ∈ Si and v ∈ Si+1 ∪ · · · ∪ Tr, then u≺v; and if u ∈ Ti and v ∈ Ti+1 ∪ · · · ∪ Tr,
then u≺v. Define

[Ti)
≺ := S1 ∪ . . . ∪ Sk ∪ T1 ∪ . . . ∪ Ti−1.

When no total order ≺ is specified, we will omit the superscript and just write [Si) or [Ti).

2.1 Functions f and f̄

Assume function f on subsets of V is submodular and f(∅) = 0. Define function f̄ on subsets
A of V as follows:

f̄(A) := f(V − A)− f(V ).

It is straightforward to see that f̄ is submodular and f̄(∅) = 0. Moreover,

S∗ is a minimizer of f on V ⇔ V − S∗ is a minimizer of f̄ on V. (5)

Let m̄ denote the marginal value function defined by f̄ . That is, for each B ∈ V and
A ⊆ V −B,

m̄(B, A) := f̄(A ∪B)− f̄(A).

The following relationships follow directly from the definitions:

Let {B,C,D} be a partition of V .

m(C, B) = f(B + C)− f(B)

= f̄(D) + f(V )− f̄(C + D)− f(V )

= −m̄(C,D) (6)

Let {A,B, C, D, E} be a partition of V .

mV/A(C, B) = f(B ∪ C ∪ A)− f(A)− f(B ∪ A) + f(A)

= f̄(D ∪ E) + f(V )− f̄(C ∪D ∪ E) + f(V )

= f̄(D ∪ E)− f̄(C ∪D ∪ E)

= f̄(D ∪ E)− f̄(E)− f̄(C ∪D ∪ E) + f̄(E)

= −m̄V/E(C, D) (7)

2.2 Prime sets

Given a normalized submodular function f on finite set V , a subset ∅ 6= A ⊆ V is called
prime, with respect to f , if f(B) > 0 and m(B, A−B) < 0, for every ∅ 6= B ⊂ A.

Lemma 1 Let {C,A, D} be a partition of V in which A 6= ∅. A is prime with respect to
fV/C if and only if A is prime with respect to f̄V/D.

Proof Let ∅ 6= B ⊂ A. By (7), we have that

fV/C(B) = mV/C(B, ∅)
= −m̄V/D(B, A−B), (8)
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and

mV/C(B,A−B) = −m̄V/D(B, ∅)
= −f̄V/D(B). (9)

Therefore,
fV/C(B) > 0 ⇐⇒ m̄V/D(B,A−B) < 0,

and
mV/C(B,A−B) < 0 ⇐⇒ f̄V/D(B) > 0.

Together, these give A is prime with respect to fV/C if and only if A is prime with respect
to f̄V/D, as desired. 2

Lemma 2 Let {C,A, D} be a partition of V in which A 6= ∅. If fV/C(A) ≤ 0, then A is
prime with respect to fV/C if and only if fV/C(B) > 0, for every ∅ 6= B ⊂ A. If fV/C(A) ≥ 0,
then A is prime with respect to fV/C if and only if mV/C(B, A−B) < 0, for every ∅ 6= B ⊂ A.

Proof We prove the first statement. The second follows from the first, using Lemma 1 and
the relationship between f and f̄ . The “only if” direction follows immediately from the
definition of prime. For the “if” direction, let ∅ 6= B ⊂ A. Then:

mV/C(B,A−B) = fV/C(A)− fV/C(A−B) (10)

< 0, (11)

where (10) follows from the definition of marginal value, and (11) follows since fV/C(A) ≤ 0
and fV/C(A−B) > 0. 2

Lemma 3 Let {C,A, D} be a partition of V in which A 6= ∅ is prime with respect to fV/C,
and fV/C(A) ≤ 0. If f(A) ≤ 0, then A is prime with respect to f .

Proof By Lemma 6, it suffices to show that f(B) > 0, for each ∅ 6= B ⊂ A. Let ∅ 6= B ⊂ A.
Then

f(B) = m(B, ∅) (12)

≥ m(B, C) (13)

> 0, (14)

where (12) follows by definition of marginal value and the fact that f(∅) = 0; (13) follows
by submodularity; and (14) follows from the fact that A is prime with respect to fV/C . 2

3 Self Minimizers

A subset S ⊆ V is a self minimizer of f if f(S) ≤ f(A), for every A ⊂ S. Clearly, ∅
is a self minimizer, and any minimizer of f on V is a self minimizer. Set A is a minimal
self minimizer of f if A 6= ∅, A is a self minimizer of f , and A contains no proper subset
satisfying these two properties.
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3.1 Characterizations of self minimizers and minimal self mini-
mizers

Lemma 4 Let ∅ 6= A ⊆ V . Then A is a self minimizer of f if and only if m(B, A−B) ≤ 0,
for each ∅ 6= B ⊆ A.

Proof. For any ∅ 6= B ⊆ A,

m(B, A−B) = f(A)− f(A−B).

Therefore, m(B,A− B) ≤ 0 for all such B, if and only if f(A) ≤ f(A− B), for all such B,
which is the definition of A being a self minimizer. 2

Lemma 5 Let ∅ 6= B ⊆ V . If f(B) ≤ 0, then B contains a nonempty self minimizer.
In particular, any S ⊆ B that is minimal with respect to both being nonempty and having
f(S) ≤ 0 is a minimal self minimizer.

Proof. Take S to be a minimal nonempty subset of B having f(S) ≤ 0. Then since
f(S ′) > 0 ≥ f(S), for every ∅ 6= S ′ ⊂ S, we have that S is a minimizer of f on S, as desired.
2

Lemma 6 Let ∅ 6= A ⊂ V . Then A is a a minimal self minimizer of f if and only if the
following conditions hold:

1. f(A) ≤ 0.

2. f(B) > 0, for every ∅ 6= B ⊂ A.

Proof. (⇐) Let ∅ 6= B ⊂ A. By item 2, f(∅) = 0 < f(B), and by item 1, f(A) ≤ f(∅).
Combining, we have A is a self minimizer of f and B is not a self minimizer of f . Therefore,
A is a minimal self minimizer of f .

(⇒) Assume A is a a minimal nonempty self minimizer of f and let ∅ 6= B ⊂ A. If f(B) ≤ 0,
then by Lemma 5, B contains a nonempty self minimizer, a contradiction. Therefore, item
2 must hold. Now, since A is a self minimizer, f(A) ≤ f(∅) = 0 item 1 holds, as desired. 2

Lemma 7 Let {C,A, D} be a partition of V in which A 6= ∅. A is a minimial self minimizer
of fV/C if and only if A is prime with respect to fV/C, and fV/C(A) ≤ 0.

Proof (⇒) Assume A is a minimal self minimizer, and let ∅ 6= B ⊂ A. By Lemma 6,
fV/C(A) ≤ 0, fV/C(B) > 0, and fV/C(A−B) > 0. It follows that

mV/C(B, A−B) = fV/C(A)− fV/C(A−B) < 0,

as desired.

(⇐) Assume A is prime and fV/C(A) ≤ 0. By definition of prime, fV/C(B) > 0, for each
∅ 6= B ⊂ A. Now by Lemma 6, A is a minimal self minimizer, as desired. 2
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Lemma 8 Let {C, A, D} be a partition of V in which A 6= ∅. A is a minimial self minimizer
of f̄V/D if and only if A is prime with respect to fV/C, and fV/C(A) ≥ 0.

Proof This follows immediately from Lemmas 1 and 8, using the fact that

fV/C(A) ≥ 0 ⇐⇒ f̄V/D(A) ≤ 0.

2

3.2 Decomposition of minimizers into minimal self minimizers

Lemma 9 Assume A ⊆ V is a self minimizer of f , and C ⊂ A. Then A − C is a self
minimizer of fV/C.

Proof. Let ∅ 6= B ⊆ A− C. Then

mV/C(B, A− C −B) = m(B,A−B) (15)

≤ 0, (16)

where (15) follows from (3), and (16) follows from Lemma 4 and the fact that A is a self
minimizer of f . Now, again by Lemma 4, A− C is a self minimizer of fV/C , as desired. 2

Lemma 10 Assume A ⊆ V . If A is a self minimizer of f , then A is contained in some
minimizer of f .

Proof. Let T be a minimizer of f . We have:

f(A ∪ T ) ≤ f(A) + f(T )− f(A ∩ T ) ≤ f(T ),

where the first inequality holds because f is submodular, and the second inequality holds
because A is a self minimizer of f . 2

Lemma 11 Assume B ⊂ S ⊆ V , that B is a self minimizer of f , and that S − B is a self
minimizer of fN/B. Then S is a self minimizer of f .

Proof. Let S ′ ⊂ S. Then

f(S ′) ≥ f(B ∪ S ′) + f(S ′ ∩B)− f(B) (17)

= f(S ′ ∩B) + fN/B(S ′ −B) (18)

≥ f(B) + fN/B(S −B) (19)

= f(S), (20)

where 17 follows by submodularity of f , 18 follows by definition of contraction, 19 follows
because B is a self minimizer of f and S − B is a self minimizer of fN/B, and 20 follows by
the definition of contraction. Thus, S is a self minimizer of f , as desired. 2
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Theorem 12 Assume S is a minimizer of f . Then S may be partitioned into a sequence
of non-empty subsets S1, S2, . . . , Sk, such that for each i ∈ {1, 2, . . . , k}, we have that Si is a
minimal self minimizer of fV/[Si).

Proof. The proof is by induction on |S|. The theorem is certainly true if |S| = 0. Assume
|S| > 0 and that the theorem is true for all normalized submodular functions and minimizers
with fewer elements. Since S is a minimizer of f , we know that S is a self minimizer of f .
Therefore, S contains a minimal nonempty self minimizer, S1, say, of f . By Lemma 9, S−S1

is a self minimizer of fV/S1 . By the induction hypothesis, S − S1 may be partitioned into a
sequence of non-empty subsets S2, . . . , Sk, such that for each i ∈ {2, . . . , k}, we have that Si

is a minimal nonempty self minimizer of fV/(Si]. This completes the proof. 2

Corollary 13 Let f be a submodular function on V . Then there is a partition of V into a
sequence S1, S2, . . . , Sk, T1, T2, . . . , Tl, such that

• m(Si, [Si)) ≤ 0 and Si is prime with respect to fV/[Si), for each i ∈ 1, . . . , k; and

• m(Ti, [Ti) ≥ 0 and Ti is prime with respect to fV/[Ti), for each i ∈ 1, . . . , l.

Proof. This follows directly from Theorem 12, together with (5) and Lemma 8. 2

Theorem 14 Let S1, S2, . . . , Sk be a sequence of disjoint nonempty subsets of V such that
for each i ∈ {1, 2, . . . , k}, we have that Si is a self minimizer of fV/[Si). Then S := S1∪· · ·∪Sk

is a self minimizer of f . Moreover, if S1, S2, . . . , Sk is a maximal such sequence, then S is a
minimizer of f .

Proof. We begin with the proof that S is a self minimizer of f . The proof is by induction
on k. If k = 1, then the result is immediate. Assume true for all smaller k. Then, by the
induction hypotheses, we can conclude that S1 ∪ · · · ∪ Sk−1 is a self minimizer of f . By
Lemma 11, S is a self minimizer of f .

Now assume S1, S2, . . . , Sk is a maximal such sequence; that is, fV/S has no nonempty self
minimizer. Since S is a self minimizer of f , we have by Lemma 10 that S is contained in
some minimizer S∗ of f . If S 6= S∗, then by Lemma 9, S∗ − S is a nonempty self minimizer
of fV/S, a contradiction. Thus, S = S∗, as desired. 2

Lemma 15 Let {C,A, D} be a partition of V in which A 6= ∅; A is prime with respect to
fV/C; and fV/C(A) ≤ 0. If f(A) > 0, then there is a partition of A into a sequence A1, . . . , Ak,
such that, for each i ∈ {1, . . . , k}, Ai is prime with respect to fV/[Ai), and fV/[Ai)(Ai) > 0.

Proof. From Theorem 12, it suffices to show that A is a minimizer with respect to f̄V/C∪D.
To show this, it suffices to show that m̄V/C∪D(B, A−B) = f(B) > 0, for every ∅ 6= B ⊂ A.

f(B) = m(B, ∅) (21)

≥ m(B, C) (22)

> 0, (23)

where (21) follows by definition; (22) follows by submodularity; and (23) follows because A
is prime with respect to fV/C 2
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4 Minimal self minimizers

4.1 Decomposition of minimal self minimizers

The goal is to efficiently recognize minimal self minimizers. Toward this goal, we have a
decomposition result.

Theorem 16 Let A be a minimal self minimizer of f with |A| > 1. Then there is a partition
of A into a sequence of at least two nonempty sets {A1, · · · , Ak}, such that the following hold:

1. Each Ai is prime with respect to fV/[Ai), for each i ∈ {1, . . . , k};
2. f(A1) > 0;

3. m(Ak, [Ak)) < 0;

4. m(Ai, [Ai)) = 0, for each i ∈ {2, . . . , k − 1};
5. if k > 2, then m(Ak, [Ai)) ≥ 0, for each i ∈ {1, . . . , k − 1}.

Proof. Let A1 be a nonempty proper subset of A with smallest value of f , among nonempty
proper subsets of A, and subject to this, choose A1 to be minimal. Recursively, starting with
i = 2, as long as A− [Ai) 6= ∅, define Ai to be a minimal self minimizer of fV/[Ai). Each Ai

exists, since m(A− [Ai), [Ai)) < 0.

By choice of A1, we have that both A1 and A−A1 are nonempty. Then, since A is a minimal
self minimizer, and is therefore prime, we know that f(A1) > 0 and fV/[Ak)(Ak) < 0. The
fact that m(Ai, [Ai)) ≤ 0, for each i ∈ {2, . . . , k − 1}, follows from the fact that each Ai to
be a minimal self minimizer of fV/[Ai). If m(Ai, [Ai)) < 0, for some i, then this contradicts
the choice of A1.

Finally, assume k > 2, and let i ∈ {1, . . . , k−1}. If i = 1, then m(Ak, ∅) > 0 follows because
A is a minimal self minimizer. Assume i ∈ {2, . . . , k − 1}. Supppose m(Ak, [Ai)) < 0. Then

f(Ak ∪ [Ai)) = f([Ai)) + m(Ak, [Ai))

= f(A1) + m(Ak, [Ai))

< f(A1),

contradicting choice of A1. 2

4.2 Composition of minimal self minimizers

We seek a composition theorem for minimal self minimizers. Particularly nice would be a
theorem analagous to the decomposition Theorem 16. Such a result would lead directly to
a recognition algorithm, since each item in that theorem can be efficiently verified.

We do not have such a result, but we have some observations in that direction.

Throughout this section, let us assume the following. We have a subset ∅ 6= A ⊂ V , such
that f(A) < 0, and a partition of A into a sequence A1, . . . , Ap of p ≥ 2 nonempty sets.

9



The goal is to find conditions under which we can conclude A is a minimal self minimizer.
Equivalently, by Lemma 6, we need to show f(B) > 0, for each ∅ 6= B ⊂ A.

Let ∅ 6= B ⊂ A. Define Bi := B ∩ Ai, and let Ci := C ∩ Ai, for each i ∈ {1 . . . p}.
The following theorem is the best we do in this paper, with the conclusion that A is a
self minimizer (not necessarily minimal). This theorem also states that f(B) > 0 for some
subsets B of A, and that if f(B) ≤ 0, then B must contain Ap.

Theorem 17 Assume ∅ 6= A ⊂ V , such that f(A) < 0, and a partition of A into a sequence
A1, . . . , Ap of p ≥ 2 nonempty sets, with the properties:

1. Ai is prime with respect to fV/[Ai), for each i ∈ {1 . . . p};
2. f(Ai) > 0 for each i ∈ {1, . . . , p};
3. m(A1, Ap) < 0, and m(Ap, [Ap)) < 0;

4. m(Ai, [Ai)) = 0, for each i ∈ {2, . . . , p− 1};

Then A is a self minimizer with respect to f .

Let ∅ 6= B ⊂ A. If Ap −B 6= ∅, then f(B) > 0. In addition, there is a set A′ ⊆ A such that
Ap ⊂ A′, and A′ is a minimal self minimizer with respect to f . Moreover, every minimal
self minimizer with respect to f contained in A properly contains Ap.

Proof. We leave the fact that A is a self minimizer for last.

Let ∅ 6= B ⊂ A, with Ap −B = Cp 6= ∅. Then we have that m(Bp, [Ap−1)) ≥ 0. Now,

f(B) =
∑

i∈{1,...,p}
m(Bi, B1 ∪ · · · ∪Bi−1) (24)

≥ ∑

i∈{1,...,p}
m(Bi, A1 ∪ · · · ∪ Ai−1) (25)

≥ 0, (26)

where (24) follows by definition of marginal value; (25) follows by submodularity; and (26)
follows by the facts that Ai is prime with respect to fV/[Ai−1), m(Ai, [Ai)) ≥ 0, for i ∈
{1, . . . , p− 1}, and m(Bp, [Ap−1)) ≥ 0.

Now, to argue f(B) > 0, we need to show that at least one term in (24) is strictly positive.
If B1 6= ∅, then the first term is positive. Suppose B1 = ∅. Let 2 ≤ q ≤ p be the smallest
index with Bq 6= ∅. Then the first nonempty term in (24) is m(Bq, ∅). If Bq 6= Aq, then this
term is positive, since Ap is prime. If Bq = Aq, then this term is positive, by item 2.

Next we investigate A′. Since f(A) < 0, A contains a minimal self minimizer, A′. Since
f(B) > 0, for every nonempty subset that doesn’t contain Ap, it must be that Ap ⊆ A′.
Since f(Ap) > 0, Ap 6= A′.

Finally, we show A is a minimizer by showing m(A − B, B) ≤ 0, for each B ⊆ A. If
Ap −B 6= ∅, this follows easily:

m(A−B, B) = f(A)− f(B) ≤ 0,
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T since f(A) < 0 and f(B) > 0. Now assume Ap ⊆ B. Then:

m(A−B, B) = m(C1, B) +
∑

i∈{2,...,p−1}
m(Ci, B ∪ [Ai)) (27)

≤ m(C1, B1 ∪ Ap) +
∑

i∈{2,...,p−1}
m(Ci, Bi ∪ [Ai)) (28)

≤ 0, (29)

where (27) follows by definition of marginal value, and (28) follows by submodularity. For
(29), we show each term of (28) is nonnegative. The first term follows, if C1 6= A1, since A1

is prime. If C1 = A1, then it follows from item 3. That each term in the sum of the second
term of (28) is nonnegative follows by item 1, if Ci 6= Ai, and by item 4, otherwise. 2

We would need at least one more (as yet unknown) condition, besides those in Theorem 17,
to prove A is a minimal self minimizer. Indeed, here is an example where A = A1 ∪ A2 is
not a minimal self minimizer, although A, A1, and A2 satisfy the conditions of Theorem 17.
In the example below, A1 = {a, b}, A2 = {c}.
The needed condition must rule out subsets B with Ak ⊂ B ⊂ A and f(B) < 0.

B f(B) m(a,B) m(b,B) m(c,B) m(B,a) m(B,b) m(B,c)

{a} 2 -1 -1 -1 -1
{b} 2 -1 -3 -1 -3
{c} 2 -1 -2 -1 -3
{a, b} 1 -3 -4
{b, c} -1 -1 -4
{a, c} 1 -3 -4
{a, b, c} -2

Clearly A is not a minimal self minimizer, since f({b, c}) < 0. A is, however, a self minimizer.

In the special case where p = 2 and |A1| = 1, we can prove a composition theorem.

Theorem 18 Assume a partition {E, A, D} of V , such that ∅ 6= A ⊆ V . Assume also that
u ∈ A, and A1 = A− u, with the property that A1 is prime with respect to fV/(E+u). Assume
also the following conditions:

1. fV/E(A) < 0;

2. fV/E(u) > 0;

3. fV/E(A1) > 0;

Then A is prime with respect to fV/E.

Proof. By item 1 and Lemma 6, we need only to show f(B) > 0, for each ∅ 6= B ⊂ A. To
that end, let ∅ 6= B ⊂ A.

If B = {u}, then f(B) > 0, by item 2. If B = A1, then f(B) > 0, by item 3. If u ∈ B, then

f(B) = f(u) + mV/E(B ∩ A1, u) (30)

> 0, (31)
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where (30) follows by definition of marginal value; and (31) follows by item 2 and the fact
that A1 is prime with respect to fV/(E+u).

Otherwise, B ⊂ A, and:

f(B) = mV/E(B ∩ A1, ∅) (32)

≥ mV/E(B ∩ A1, u) (33)

> 0, (34)

where (32) follows by definition of marginal value; (33) follows by submodularity. (34) follows
by item 2 and the fact that A1 is prime with respect to fV/(E+u). 2

Lest one might believe a similar theorem holds in the case that item 1 is replaced with
fV/E(A) > 0, we have this counterexample shown in the table below, where V = {a, b, c}.
It is straightforward to check that letting A = {a, b, c} and A1 = {b, c}, we have that A1 is
prime with respect to fV/a; f(a) > 0; f(A1) > 0; and f(A) > 0. However, A is not prime
with respect to f . Indeed, m({a, b}, c) > 0.

B f(B) m(a,B) m(b,B) m(c,B) m(B,a) m(B,b) m(B,c)

{a} 1 2 2 0 0
{b} 1 2 2 0 0
{c} 1 2 2 0 0
{a, b} 3 -1 2
{b, c} 3 -1 2
{a, c} 3 -1 2
{a, b, c} 2

2

Another possible analog would be the following conditions:

1. A1 prime with respect to fV/(E+u);

2. fV/E(A) > 0;

3. mV/E(A1, u) < 0;

4. mV/E(u,A1) < 0;

But again, these don’t imply A is prime with respect fV/E, as the following example shows:

B f(B) m(a,B) m(b,B) m(c,B) m(B,a) m(B,b) m(B,c)

{a} 3 1 1 1 1
{b} 3 1 -2 1 -2
{c} 3 1 -2 1 -2
{a, b} 4 -2 -1
{b, c} 1 1 -1
{a, c} 4 -2 -1
{a, b, c} 2

In this example, A = V = {a, b, c}. Let u = a, and A1 = {b, c}. It is straightforward to
check that A1 is prime with respect to fV/a and the conjectured conditions hold. But since
m(a, {b, c}) > 0, the set A cannot be prime. 2
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Another possible conjecture is that every prime set decomposes as in Theorem 18. Unfortu-
nately this is not true. Below is an example of a minimal self minimizer A such that A− u
is not a minimal self minimizer with respect to fV/u, for every u ∈ V .

B f(B) m(a,B) m(b,B) m(c,B) m(B,a) m(B,b) m(B,c)

{a} 2 -1 -1 -1 -1
{b} 2 -1 -1 -1 -1
{c} 2 -1 -1 -1 -1
{a, b} 1 -2 -3
{b, c} 1 -2 -3
{a, c} 1 -2 -3
{a, b, c} -1

2

5 Pseudoprime Sets

In Sections 4.1 and 4.2, it becomes evident that sets with zero marginal value add compli-
cation. For this reason, we introduce the notion of pseudoprime sets. A psuedoprime set A
is a prime set unless it has a nonempty proper subset with function value equal to 0 or to
that of set A itself.

In this section, we define pseudoprime sets and list the properties and results that are
analogous to those for prime sets. In each case, the proof is similar but simpler to its
prime-set analog. Therefore, we omit these proofs.

Given a normalized submodular function f on V , a set A ⊆ V is pseudoprime if for each
∅ 6= B ⊂ A, the following two properties hold:

• f(B) ≥ 0, and

• m(B, A−B) ≤ 0.

Pseudoprime sets have many of the same properties as prime sets, and we list several here
without proof. For this purpose, assume V is partitioned into a sequence {C,A, D}.

• A is pseudoprime with respect to fV/C if and only if A is pseudoprime with respect to
f̄V/D.

• If fV/C(A) ≤ 0, then A is pseudoprime with respect to fV/C if and only if fV/C(B) ≥ 0,
for every ∅ 6= B ⊂ A.

• If fV/C(A) ≥ 0, then A is pseudoprime with respect to fV/C if and only if mV/C(B, A−
B) ≤ 0, for every ∅ 6= B ⊂ A.

• Assume A is pseudoprime with respect to fV/C , and fV/C(A) ≤ 0. If f(A) ≤ 0, then A
is pseudoprime with respect to f .

The connection between pseudoprime sets and minimal self minimizers is not very natu-
ral. However, we do have the following decomposition of minimizers into pseudoprime self
minimizers.
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• If A is pseudoprime with respect to fV/C and fV/C(A) ≤ 0, then A is a self minimizer
with respect to fV/C .

• If A is pseudoprime and fV/C(A) ≥ 0, then A is a self minimizer with respect to f̄V/C .

• If A is a self minimizer with respect to f , then A can be partitioned into a sequence
{A1, A2, . . . , Ak}, such that for each i ∈ {1, . . . , k}, Ai is pseudoprime with respect to
fV/[Ai) and fV/[Ai)(Ai) ≤ 0.

• If A is partitioned into a sequence {A1, A2, . . . , Ak}, such that for each i ∈ {1, . . . , k},
Ai is pseudoprime with respect to fV/[Ai) and fV/[Ai)(Ai) ≤ 0, then A is a self minimizer
with respect to f .

Theorem 19 There is a partition of V into a sequence of sets

{S1, S2, . . . , Sk, T1, T2, . . . , Tl},

such that

• fV/[Si)(Si) ≤ 0, and Si is pseudoprime with respect to fV/[Si), for each i ∈ {1, . . . , k};
• fV/[Ti)(Ti) ≥ 0, and Ti is pseudoprime with respect to fV/[Ti), for each i ∈ {1, . . . , l}.

Given such a partition, the set S := S1 ∪ S2 ∪ · · · ∪ Sk is a minimizer of f . Moreover, every
minimizer of f decomposes in this way.

2

A sequence of the type ensured by Theorem 19 is called a pseudoprime decomposition of V .

The decomposition theorem for pseudoprime sets that is analagous to Theorem 16 is simpler:

Theorem 20 Let A be a pseudoprime set with respect to f . Then there is a partition of A
into a sequence of two nonempty sets {A1, A2}, such that the following hold:

• A1 is pseudoprime with respect to f and A2 is pseudoprime with respect to fV/A1;
f(A1) ≥ 0 and m(A2, A1) ≤ 0;

• f(A2) ≥ 0 and m(A1, A2) ≤ 0;

As for composition, as in the case of primes, the conditions under which a partition of A into
sequence {A1, A2} satisfying the above three properties implies A is pseudoprime remain an
open question. We do, however, have an analog to Theorem 17.

Theorem 21 Assume ∅ 6= A ⊂ V , such that f(A) ≤ 0, and a partition of A into a sequence
of nonempty sets {A1, A2}, with the properties:

1. A1 is pseudoprime with respect to f and A2 is pseudoprime with respect to fV/A1;

2. f(A1) ≥ 0 and m(A2, A1) ≤ 0;
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3. f(A2) ≥ 0 and m(A1, A2) ≤ 0;

Then A is a self minimizer with respect to f .

We do give a polynomial certificate for verifying a set A is a pseudo-prime set in Theorem
25. Unfortunately, this is a convex certificate involving not just one but |A| vectors.

Let ∅ 6= B ⊂ A. If A2 −B 6= ∅, then f(B) ≥ 0. In addition, if f(A) < 0, then there is a set
A′ ⊆ A such that A2 ⊂ A′, f(A′) < 0, and A′ is pseudoprime with respect to f . Moreover,
every such subset A′ of A properly contains A2.

6 Polyhedral and Algorithmic Issues

Given a submodular funcion f on V , with f(∅) = 0, Edmonds [4] defined the polyhedron:

Pf := {x ∈ RV : x(V ) = f(V ); x(A) ≤ f(A), for every A ⊆ V },

where RV denotes the |V |-dimensional real vector space with components indexed on V , and
for x ∈ RV and A ⊆ V , x(A) :=

∑
v∈A xv. Given a total order ≺ of the set V , the greedy

vector b≺ is defined as follows:

b≺v := f([v]≺)− f([v)≺).

Here are 2 definitions equivalent to the one above:

b≺v := m(v, [v)≺). (35)

b≺v := fV/[v)≺(v). (36)

Theorem 22 (Edmonds [4]) The extreme points of Pf are exactly the greedy vectors b≺.

2

Given a partition of V into a sequence {E,A, D} of subsets, define fV/E\D to be the sub-
modular function on A, where for B ⊆ A,

fV/E\D(B) := f(B ∪ E)− f(E).

Given vectors x ∈ RE and y ∈ RA, let x|y ∈ RE∪A be the concatination of x and y.

Proposition 23 Let {E, A} be a partition of V , x ∈ PV \A, and y ∈ PfV/E
. Then x|y ∈ Pf .

Proof. For convenience, let z = x|y. First we show z(V ) = f(V ). We have

z(V ) = x(E) + y(A)

= f(E) + fV/E(A) (37)

= f(E) + f(E ∪ A)− f(E)

= f(V ),
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as desired. Now let ∅ 6= B ⊂ V .

z(B) = x(B ∩ E) + y(B ∩ A)

≤ f(B ∩ E) + fV/E(B ∩ A)

= f(B ∩ E) + m(B ∩ A,E)

≤ f(B ∩ E) + m(B ∩ A,B ∩ E) (38)

= f(B), (39)

where (38) follows from submodularity of f , and (39) follows from the definition of marginal
value. 2

Corollary 24 The greedy vector b≺ ∈ Pf .

2

The vector that is 1 in component v and zero elsewhere is denoted χv. The dimension of χv

should always be clear from the context.

Theorem 25 Assume a normalized submodular function f on V , and ∅ 6= A ⊆ V . Then
A is pseudoprime with respect to f if and only if the vector f(A)χv ∈ PfV \(V−A)

, for every
v ∈ A.

Proof. (=⇒) Assume ∅ 6= A is pseudoprime with respect to f . Let v ∈ A, and let
∅ 6= B ⊆ A. If v ∈ B, then

f(A)χv(B) = f(A) ≤ f(B),

since A is a self minimizer, as desired. If B = A, then equality holds, as required. Assume
v 6∈ B. Then

f(A)χv(B) = 0 ≤ f(B),

since A is pseudoprime, as desired. 2

(⇐=) Assume f(A)χv ∈ Pf , for every v ∈ A. To show A is pseudoprime, let ∅ 6= B ⊂ A.
Let v ∈ A−B. Since f(A)χv ∈ Pf , we have

0 = f(A)χv(B) ≤ f(B),

as desired. We also have

f(A) = f(A)χv(A−B) ≤ f(A−B),

which gives us
m(B, A−B) = f(A)− f(A−B) ≤ 0,

as desired. 2

Theorem 26 Let {S1, S2, . . . , Sp, T1, T2, . . . , Tq} be a pseudoprime decomposition of V . Then
there exists a collection W = {(λi,≺i, b

i) : i = 1, . . . , k} of weighted extreme vectors, where
for each i = 1, . . . , k, bi is the greedy vector corresponding to ≺i and λi > 0;

∑k
i=1 λi = 1;

and vector x :=
∑k

i=1 λib
i, such that:
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1. xv ≤ 0, for each v ∈ S1 ∪ · · · ∪ Sp;

2. xv ≥ 0, for each v ∈ T1 ∪ · · · ∪ Tq);

3. for each j ∈ {1, . . . , p}, the set (Sj] is a lower ideal of each order ≺i∈ W ;

4. |{v ∈ Sj : xv 6= 0}| ≤ 1, for each j ∈ {1, . . . , p};
5. for each j ∈ {1, . . . , p}, the set (Tj] is a lower ideal of each order ≺i∈ W ;

6. |{v ∈ Tj : xv 6= 0}| ≥ 1, for each j ∈ {1, . . . , q}.

Proof. This is straightforward from Theorem 25 and Proposition 23. 2

Next we show how to find a pseudoprime decomposition, together with the collection W
of weighted extreme vectors guaranteed by Theorem 26. Our approach involves modifying
Schrijver’s algorithm for submodular function minimization, which we review next.

6.1 Schrijver’s Algorithm

Here we review Schrijver’s polynomial algorithm for minimizing a submodular function.
Given a collection {≺1,≺2, . . . ,≺k} of total orders on V , the digraph G = (V,A) has an arc
(u, v) ∈ A if u≺iv, for some i ∈ {1, . . . , k}. Given total order ≺ and elements s≺t ∈ V , the
interval (s, t]≺ := {u ∈ V : s≺u ¹ t}.

Input: A submodular function f : 2V → <, having f(∅) = 0, given via an oracle.

Output: 1. A collection of weighted extreme points:
W = {(λ1,≺1, b

≺1), (λ2,≺2, b
≺2), . . . , (λk,≺k, b

≺k)}, where
∑k

i=1 λi = 1,
and for each i ∈ {1, . . . , k}, λi ≥ 0, ≺i is a total order of V , and b≺i is
the vector obtained via the greedy algorithm and order ≺i.

2. A set U∗ ⊆ V that is a lower ideal of each order ≺1,≺2, . . . ,≺k, and
such that, where x :=

∑k
i=1 λib

≺i , the set U∗ contains every element
v ∈ V with xv < 0 and U∗ contains no element v ∈ V with xv > 0.

Step 0: [Initialize]
Let ≺1 be an arbitrary order of V , let b≺1 be the corresponding extreme
point, and let λ1 = 1. Put W := {(λ1,≺1, b

≺1)}. Index the elements of
V = {1, 2, . . . , n}.

Step 1: [Construct Auxiliary Digraph with Distances]
Create auxiliary directed graph G = (V, A), where
A := {(u, v) : u ≺i v, for some i = 1, . . . , n}. Define x :=

∑k
i=1 λib

≺i .
Define P := {v ∈ V : xv > 0}, and N := {v ∈ V : xv < 0}.
For each v ∈ V , define dv to be the number of arcs in a shortest dipath to
v from some node in P .

Step 2: [Check Optimality Condition]
If dv = +∞, for each v ∈ N , then let
U∗ := {v ∈ V : there is a dipath from v to some node in N}.
Return W and U∗.
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Step 3: [Choose s, t, and ≺1]
Choose t ∈ N with dt maximum among v ∈ V with finite dv, breaking any
ties by choosing t with maximum index. Choose s ∈ V such that (s, t) ∈ A,
ds = dt − 1, and s having maximum index. Choose order ≺1 (renumbering
if necessary) with s ≺1 t and with the largest |(s, t]≺i

|.
Step 4: [Improve]

Compute δ ≥ 0 such that b≺1 + δ(χt − χs) is a convex combination of the
extreme points b≺

s,u
1 , for u ∈ (s, t]≺1 .

Compute y = x + λ1δ(χ
t − χs).

Let x′ be the point on the line segment xy closest to y and having x′t ≤ 0.
Describe x′ as a convex combination of b≺i , for i = 1, . . . , k, and b≺

s,u
1 , for

u ∈ (s, t]≺1 , where either x′t = 0 or b≺1 is removed from the list. Update W .

Step 5: [Reduce W]
Apply Gaussian elimination to reduce the set W of weighted extreme points
to one having size at most |V |. Return to Step 1.

6.2 Correctness and Complexity of Schrijver’s Algorithm

Schrijver shows the number of iterations is bounded by |V |6 as follows. In the current
iteration, let

α := |(s, t]≺1|,
and let

β := number of i ∈ {1, . . . , k} with |(s, t]≺i
= α.

Let x′, d′, A′, P ′, N ′, t′, s′, α′, β′ be the objects x, d, A, P , N , t, s, α, β in the next iteration.

For each iteration of the algorithm d′v ≥ dv, for each v ∈ V . (This relies on the fact that
P ′ ⊆ P and that the only arcs in A′ \ A are of the type (u, v), where s ¹1 v ≺1 u ¹1 t.)
Moreover, if after some iteration, d′v = dv, for each v ∈ V , then the vector (d′t′ , t

′, s′, α′, β′) is
lexicographically smaller than (dt, t, s, α, β). While dv remains constant, for each v ∈ V , there
are at most |V | different possible values for s, α, and β, and at most |V | different possible
pairs (dt, t). Thus, there are at most |V |4 iterations between two consecutive iterations in
which some dv increases. Finally, there can be at most |V |2 iterations in which some dv

increases.

Given that the algorithm terminates, it must do so in Step 2. At that point, since U∗ has no
incoming arcs in G, it follows that U∗ is a lower ideal in each ≺i, i ∈ {1, . . . , k}. Moreover,
U∗ contains every member of N and no member of P . It now follows that for every S ⊆ V ,

f(U∗) = x(U∗) (40)

≤ x(S) (41)

≤ f(S), (42)

where (40) follows from the fact that U∗ is a lower ideal of ≺i, for each ı ∈ {1, . . . , k}; (41)
follows since U∗ contains every negative component and no positive component of x; and (42)
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follows because x ∈ Pf . This proves optimality of U∗ and completes the proof of correctness.
2

6.3 Strong Components of G

In this section, we show that Schrijver’s algorithm can be modified to construct a pseu-
doprime decomposition of V , together with the collection W and vector x guaranteed by
Theorem 26. Our analysis shows the complexity of this modified algorithm is O(|U∗|8).
First we have some definitions about digraphs.

Given a digraph G = (V, A), and U ⊆ V , let G[U ] := (U,A′) be the subgraph of G induced
by U , where arc (u, v) ∈ A′ if and only if u ∈ U , v ∈ U , and (u, v) ∈ A.

Digraph G is strongly connected if for every pair of nodes u, v ∈ V , G has a dipath from u
to v.

For every digraph G there is a unique partition of V into a sequence {V1, V2, . . . , Vr}, where
for each i ∈ {1, . . . , r},

• Gi := G[Vi] is strongly connected; and

• any arc (u, v) with u ∈ Vi has v ∈ Vj, for some j ≥ i.

The digraphs Gi are called the strong components of G.

During execution, Schrijver’s algorithm constructs and maintains an auxiliary digraph. Let
G = (V,A) be this digraph at the time the algorithm terminates. Let us also have the
final subsets U∗, P , and N of V , the final vector x, together with the collection of weighted
extreme points:

W = {(λ1,≺1, b
≺1), (λ2,≺2, b

≺2), . . . , (λk,≺k, b
≺k)}

where
∑k

i=1 λi = 1, and for each i ∈ {1, . . . , k}, λi ≥ 0, ≺i is a total order of V , and b≺i is
the vector obtained via the greedy algorithm and order ≺i.

We add a post-processing phase to Schrijver’s algorithm, the purpose of which is to reach
the stage where each strong component of G[U∗] has at most one node v for which xv 6= 0.
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Strong Components Algorithm

Input: A submodular function f : 2V → <, having f(∅) = 0, given via an oracle;
the output from Schrijver’s Algorithm applied to f .

Output: 1. A collection of weighted extreme points:
W = {(λ1,≺1, b

≺1), (λ2,≺2, b
≺2), . . . , (λk,≺k, b

≺k)}, where
∑k

i=1 λi = 1,
and for each i ∈ {1, . . . , k}, λi ≥ 0, ≺i is a total order of V , and b≺i is
the vector obtained via the greedy algorithm and order ≺i.

2. Sets S1, S2, . . . , Sp, such that:

(a) each set Si is a strong component of G;

(b) each set S1 ∪ . . . ∪ Si is a lower ideal of each ≺j;

(c) for each set Si, the vector x has at most one nonzero component
and that component is xv ≤ 0.

Step 0: [Initialize]
Delete V − U∗ from G and from each member of W .

Let S1, S2, . . . , Sp be a sequenced partition of U∗ into the node sets of the
strong components of G, ordered so that each set (Si] is a lower ideal of
each order in W . Index the members of U∗ consistent with the sequence
S1, S2, . . . , Sp.

For each i ∈ {1 . . . p}, choose one root node ui ∈ Si.

For each i ∈ {1 . . . p} let Gi = (Si, Ai) be G restricted to node set Si.

Step 1: [Compute Distances]
For each i ∈ {1 . . . p}, define du to be the number of arcs in a shortest
dipath to u from node ui. If some node u ∈ Si is not reachable from ui,
then subdivide Si into its sequenced partition of strong components, and
choose a root for each component that does not contain the current ui.
Renumber the sets Si to reflect this subdivision.

Step 2: [Check Doneness]
If xu = 0, for each u ∈ Si − ui, and each i ∈ {1 . . . p}, and if every ele-
ment v ∈ V has at some point been a designated ui, then stop and return
S1, S2, . . . , Sp. If xu = 0, for each u ∈ Si − ui, and each i ∈ {1 . . . p}, but
some v ∈ V has not been a designated ui for the strong component to which
it currently belongs, then choose such a v ∈ Si, say, and designate v as ui.

Step 3: [Choose s, t, in Si and ≺1]
Choose a component Gi = (Si, Ai) with some nonzero component other than
xui

. Choose t ∈ Si − ui with xt < 0 and dt maximum among v ∈ Si − ui

with xt < 0, breaking any ties by choosing t with maximum index. Choose
s ∈ Si such that (s, t) ∈ Ai, ds = dt − 1, and s having maximum index.
Choose order ≺1 (renumbering if necessary) with s ≺1 t and with the largest
|(s, t]≺i

|.
Step 4: [Improve with s and t in Si]

Compute δ ≥ 0 such that b≺1 + δ(χt − χs) is a convex combination of the
extreme points b≺

s,u
1 , for u ∈ (s, t]≺1 .

Compute y = x + λ1δ(χ
t − χs).
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Let x′ be the point on the line segment xy closest to y and having x′t ≤ 0.
Describe x′ as a convex combination of b≺i , for i = 1, . . . , k, and b≺

s,u
1 , for

u ∈ (s, t]≺1 , where either x′t = 0 or b≺1 is removed from the list. Update W .

Step 5: [Reduce W]
Apply Gaussian elimination to reduce the set W of weighted extreme points
to one having size at most |U∗|. Return to Step 1.

6.4 Correctness and Complexity of Strong Components Algorithm

We show the number of iterations dealing with Gi is bounded by |U∗|7 as follows. In the
current iteration, let

α := |(s, t]≺1|,
and let

β := number of i ∈ {1, . . . , k} with |(s, t]≺i
= α.

Let x′, d′, A′, P ′, N ′, t′, s′, α′, β′ be the objects x, d, A, P , N , t, s, α, β in the next iteration.

A subdivision may occur at most |U∗| times. Between 2 iterations involving a subdivision,
an iteration involving a reassignment of some ui may occur at most |U∗| times. Now let
us develop an upper bound on the number of iterations between 2 consecutive iterations
starting with a subdivision or a reassignment.

For each iteration that does not start with a subdivision or reassignment, |U∗| ≥ d′v ≥ dv,
for each v ∈ U∗. Thus, there can be at most |U∗|2 iterations in which some dv increases,
between 2 consecutive iterations having subdivisions or reassignment.

Now let us develop an upper bound on the number of consecutive iterations in which d
remains constant.

First we argue that (d′t′ , t
′, s′, α′, β′) is lexicographically smaller than (dt, t, s, α, β). Assume

d′v = dv for every v ∈ U∗. If d′t′ < dt, then we are done. If not, then by choice of t, d′t′ = dt. If
t 6= t′, then t < t′, by choice of t. Assume t = t′. Then x′t < 0, which means b≺1 was removed
from W . If s′ 6= s, then s′ < s, and we are done. Otherwise, we have s′ = s and t′ = t.
Any orders introduced in the iteration have |(s, t]| < α. Therefore, since ≺1 was chosen with
greatest |(s, t]|, it must be that α′ ≤ α. If α′ = α, then since ≺1 has been removed, we can
conclude that β′ < β. This completes the lexicographic argument.

There are at most |U∗| different possible values for β, α, and s. While d remains constant,
there are at most |U∗| different pairs (dt, t). Thus, there are at most |Si|4 iterations between
two consecutive iterations in which some dv increases.

Together with the fact that there can be at most |U∗|2 iterations in which some dv increases,
between 2 consecutive iterations with subdivision or reassignment, and the fact that there
are an most |U∗|2 iterations with subdivision or reassignment, gives the bound of at most
2|U∗|8 iterations.

Given that the algorithm terminates, it must do so in Step 2. At that point, the sequence
S1, . . . , Sp has the required properties. 2
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The strong components algorithm works only with the minimizer U∗, and returns the de-
composition {S1, . . . , Sk} of U∗. It may be applied to V − U∗ and f̄ to obtain {T1, . . . , Tl}.

6.5 Extreme point solution

Consider the following primal-dual pair of linear programming problems:

P: Maximize x(V )

Subject to: x(A) ≤ f(A), for each A ⊆ V

xv ≤ 0, for each v ∈ V

D: Minimize
∑

A⊆V

f(A) yA

Subject to:
∑

A⊆V : v∈A

yA ≤ 1, for each v ∈ V

yA ≥ 0, for each A ⊆ V

Let x and U∗ be the vector and minimizing set obtained by executing Schrijver’s algorithm.
Let x̄ be the vector obtained from x by replacing each component xv with min(xv, 0). Let
ȳ ∈ R2V

be the vector that is 1 on U∗ and 0 elsewhere.

It is known and not difficult to show (by showing that they are feasible and complementary)
that x̄ and ȳ are optimal solutions to P and D, respectively. Indeed, this is the proof of
optimality of U∗.

We know for linear programming theory that every linear programming problem that has an
optimal solution has an extreme-point optimal solution. One might ask for an extreme-point
optimal solution to P. We have the following.

Theorem 27 Let x be the vector obtained by executing Schrijver’s algorithm followed by
the Strong Components algorithm. Let x̄ be the vector obtained from x by replacing each
component xv with min(xv, 0). Then x̄ is an extreme-point optimal solution to P.

Proof. We already know that x̄ is an optimal solution to P. To show that x̄ is an extreme
point, it suffices to provide an ordering ≺ of V so that for each v ∈ V , we have either
that xv = 0 or x̄([v)≺) = f([v)≺). Let {S1, S2, . . . , Sk} be the pseudo-prime decomposition
obtained after execution of Schrijver’s algorithm and the Strong Components algorithm, and
let ui be the last designated root for Si, for each i ∈ {1, 2, . . . , k}. Take ordering ≺ to start
with the elements S1 ∪ · · · ∪ Sk, be compatible with the sequence {S1, S2, . . . , Sk}, and have
ui last within Si, for each i ∈ {1, 2, . . . , k}. The elements of V − (S1∪· · ·∪Sk) come later, in
any order. It is easy to check, using the fact that x̄ui

= fV/[Si)(Si), for each i ∈ {1, 2, . . . , k},
that this ordering ≺ satisfies the required conditions. 2

7 Conclusions

We conclude with some questions.
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Is there a way to strengthen Theorem 21 or Theorem 17 to conclude that A is prime pseu-
doprime?

Investigate further the structure of strong components of final digraph G of the Strong
Components algorithm. These correspond to the sets in a pseudo-prime decomposition.
Let’s take the first one, G1 = (S1, A1). For each choice of u1 ∈ S1 the algorithm gives a G1.
There are possibly many different graphs G1 the algorithm could give for each u1, and also
possibly many different still for different choices of u1. Can we say anything about these
digraphs? For example, is there one digraph that “works” for all choices of u1?

Can the complexity bound obtained here for the Strong Components algorithm be improved?
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